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The problem

Given a polytope, does there exist a combinatorially equivalent∗ polytope
with all vertices on the sphere?

Yes! ⇒ Inscribable No! ⇒ Non-inscribable

∗The face lattices of the two polytopes are isomorphic
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Solving a nonlinear system

Theorem. [Firsching, 2017] A d-polytope P with n vertices is inscribable
if and only if the following system has a solution

χ (i1, . . . , ir ) det
(
pi1 , . . . , pir

)
> 0 for all i1, . . . , ir ∈

Å
[n]
r

ã
∥pi∥2 = 1 for i = 1, . . . , n

where r = d + 1, pi =

ï
pi
1

ò
, [n] = {1, . . . , n}, and χ : [n]r → {−1, 0, 1} is

the associated chirotope of P

Note: The system has nd variables,

Å
n
r

ã
inequalities of degree r , and n

equalities of degree 2
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Slack matrix

Suppose P is a d-polytope such that

P = conv{v1, . . . , vn}
P = {x ∈ Rd : 1− h⊤j x ≥ 0, j = 1, . . . ,m}

Let V = [v1 · · · vn] ∈ Rd×n and H = [h1 · · · hm] ∈ Rd×m

A slack matrix S ∈ Rn×m of P is

S =
[
1n V⊤] ï 1⊤m

−H

ò
= 1n×m − V⊤H

Note: Sij = 1− h⊤j vi is facet inequality j evaluated on vertex i
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Characterizing inscribability using slack matrices

Theorem. A d-polytope P is inscribable if and only if there exists

X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

such that

rank(X ) = d + 1

diag(A) = const.

S ≥ 0

S has the same support as slack matrices of P
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Characterizing inscribability using slack matrices

Let I z be the index set of zeros in slack matrices
Consider the following optimization problem

min
X

rank(X )

s.t. X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

Sij = 0, if (i , j) ∈ I z

Sij > 0, if (i , j) /∈ I z

Aii = 2, i = 1, . . . , n.

Note: The minimum of this problem is no less than d + 1

Question: How to solve this?
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An SDP formulation
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An SDP formulation

Instead of solving the min-rank problem directly, we consider the following
SDP problem

min
X

tr(X )−
∑

(i ,j)/∈I z
λijSij

s.t. X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

Sij = 0, if (i , j) ∈ I z

Aii = 2, i = 1, . . . , n

(P)

where λij are some positive weights
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Dual problem and duality gap

The dual problem of (P) is

max
u,v

m + n +
∑

1≤i≤n
1≤j≤m

Mij −
n∑

i=1

ui + 1

s.t.

ï
In + diag(u) 1

2M
1
2M

⊤ Im

ò
≽ 0

(D)

where

diag(u) =

u1 · · · 0
...

. . .
...

0 · · · un

 and Mij =

®
−λij , if (i , j) /∈ I z

vk for some k , if (i , j) ∈ I z

Note: The Slater’s condition holds so the duality gap is zero
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Works for inscribable polytopes?

For an inscribable polytope P

Find an inscription of P and a set of weights λij such that the duality
gap is zero evaluated at the inscription

Then, solving the SDP with the λij above will give an inscription of P

10 / 17



Example: n-gons

For n-gons, we have n = m ≥ 3 and d = 2
Problem (P) evaluated at the inscription

vi =

ï
cos

2(i − 1)π

n
sin

2(i − 1)π

n

ò⊤
, i = 1, . . . , n

hj =
1

cos π
n

ï
cos

(2j − 1)π

n
sin

(2j − 1)π

n

ò⊤
, j = 1, . . . , n

with

λij =
2

n cos2 π
n

, ∀(i , j) /∈ I z

has
f ∗p = f ∗d = 2n − n tan2

π

n
+ 1

Therefore, the SDP formulation solves the inscribability problem for
n-gons
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More examples

For d-simplices, d-cubes, and d-crosspolytopes, the SDP
formulation solves the inscribability problem

In particular, solving (P) with the following weights gives an inscription

(d-simplex) λij =
2d2

d + 1
, ∀(i , j) /∈ I z

(d-cube) λij = d21−d , ∀(i , j) /∈ I z

(d-crosspolytope) λij = 1, ∀(i , j) /∈ I z
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Algorithms
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Algorithms for the min-rank problem

Solving the SDP formulation

Alternating projection: project between the rank d + 1 cone and the
feasible set Ω of the min-rank problem

Simplified alternating projection: replace the projection onto Ω with
forcing Xk to have correct constants on correct positions
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Numerical experiments

Test set: inscribable simplicial 4-polytopes with 5 ≤ n ≤ 10 vertices

Starting point for AP and simplified AP is the solution of the SDP

Results comparing accuracy:

Alg\n 5 6 7 8 9 10

SDP 100% 100% 80% 84% 87% 59%
AP (simplified) 100% 100% 80% 86% 89% 61%

AP 100% 100% 100% 95% 97% 94%

Results comparing runtime (s):

Alg\n 5 6 7 8 9 10

SDP 0.4 0.5 0.6 0.9 1.3 1.5
AP (simplified) 0.4 0.5 1.1 1.5 2.7 7.16

AP 0.4 0.5 15.1 86.7 122.0 330.2
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Summary

In this research, we

Characterized the inscribability problem of polytopes as a min-rank
optimization problem based on slack matrices

Proposed an SDP formulation to approximate the min-rank problem
and proved it works for certain classes of polytopes

Provided three algorithms with different accuracy and efficiency for
the inscribability problem
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Thank you
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